


Economic Impact of Reduction in Surgical Eligibility Among Newly Diagnosed Patients With Chronic Rhinosinusitis (CRS)—A Managed Care Cost-Offset Model

BACKGROUND

- CRS is a serious chronic inflammatory disease with high prevalence (~15% in the United States) that produces significant morbidity. It is characterized by chronic mucosal inflammation in the nose and sinuses.^{1,2}
- Estimates of the direct costs of CRS range between \$10 and \$60 billion^{3,4}; it is estimated that the indirect costs of the condition amount to \$20 billion per year in the United States.⁴
- Though usually effective for allergic rhinitis, conventional nasal steroid sprays frequently produce unsatisfactory efficacy in the treatment of CRS.² This is due to their inability to deliver steroid high/deep in the nasal cavity (above the inferior turbinate, behind the uncinate process) to key anatomical regions (eg, the ostiomeatal complex) where sinus ostia ventilate and drain.⁵
- Evidence suggests that current medical (nonsurgical) treatment is associated with high rates of failure and low treatment satisfaction, and that approximately onethird of patients progress to endoscopic sinus surgery (ESS) within 6 months of diagnosis.⁶ Although some patients treated with ESS experience significant improvement in their symptoms, post-ESS recurrence to baseline CRS is reported to occur in about half of patients after 18 months,^{7,8} and the procedure carries a 1% risk of serious post-ESS complications, such as cerebrospinal fluid leak, major vascular injury, orbital injury, vision loss, and nasal atrophy.⁹
- Optimal medical therapy is recommended prior to ESS, and new medical treatments are being developed that may reduce progression to ESS as well as related costs.¹
- The objective of this study was to quantify the potential cost offsets associated with a reduction in ESS among patients with CRS, from the perspective of US payers.

METHODS

A 3 year, decision-analysis model was developed in Microsoft[®] Excel (Figure 1).

The model incorporating CRS-related parameters was derived from the medical literature. Costs were adjusted to 2017 dollars using the medical care component of the consumer price index. A probabilistic sensitivity analysis was conducted.

Data sources

CRS incidence rate, ESS rate, ESS revisions, and pre- and post-ESS health care costs were obtained from Bhattacharyya et al⁶; post-ESS complication rate and cost were obtained from Rudmik.⁹

Table 1. Epidemiological Inputs								
Population	1,000,000							
CRS incidence	0.745%							
ESS progression rate over 3 y	46.2%							
ESS progression rate in first 6 mo	34.3%							
Cost Inputs								
ESS (2011 USD)	\$7,726							
Revision ESS (2011 USD)	\$7,726							
Cost of complicated ESS (2011 USD)	\$16,877							
ESS-Related Costs	Baseline	Y1 Post-ESS	Y2 Post-ESS					
Medication costs	\$398	\$493	\$498					
Office visit costs	\$579	\$487	\$287					
Endoscopy-related costs	\$382	\$118	\$72					
Radiology-related costs	\$75	\$72	\$53					

Analytical Methods

- month (PPPM) perspective.
- in increments of 10%.

- Incidence: triangle
- Costs: gamma

Base-Case ESS cases and costs

- - treatment costs.

Impact of 10% reduction on ESS cases

Inputs listed in **Table 1** were used to simulate the baseline and post-ESS costs of newly diagnosed CRS patients.

To evaluate the possible economic benefit of medical treatments that reduce progression to ESS, a reduction in the rate of ESS by 10% was modeled to assess the impact on costs from a per-member-per-month (PMPM) and per-patient-per-

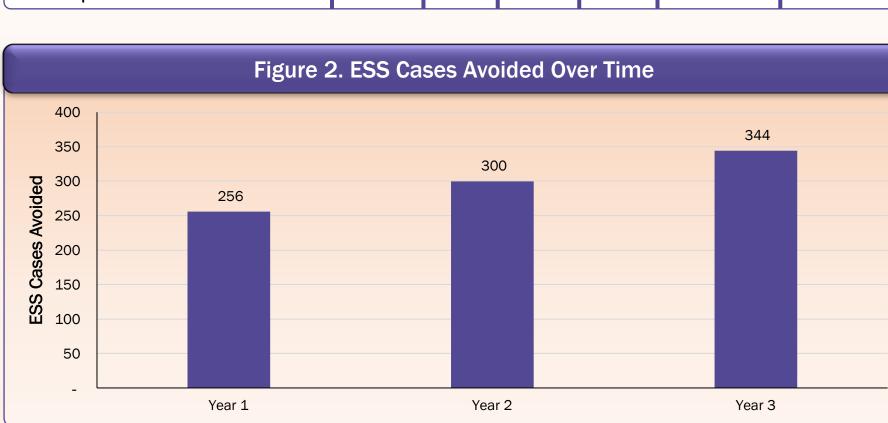
The 10% rate was chosen to facilitate extrapolation of the results of this analysis to a range of benefits that may be achieved with real-world medical interventions

Patients who avoided ESS were assumed to continue to incur baseline CRS treatment costs over the duration of the simulation.

• A probabilistic sensitivity analysis using 1000 simulations was performed by varying key model inputs, including CRS incidence rates, surgical progression and complication rates, and pre- and postsurgical health care costs. Inputs were varied using 95% confidence interval ranges reported in source publications.

The distributions used for each parameter were:

- Progress rates: beta


RESULTS

In a 1,000,000-member plan, approximately 7451 new CRS patients would be identified every year. This translates to 22,352 over 3 years, 8996 of whom would eventually be treated with ESS (Table 2).

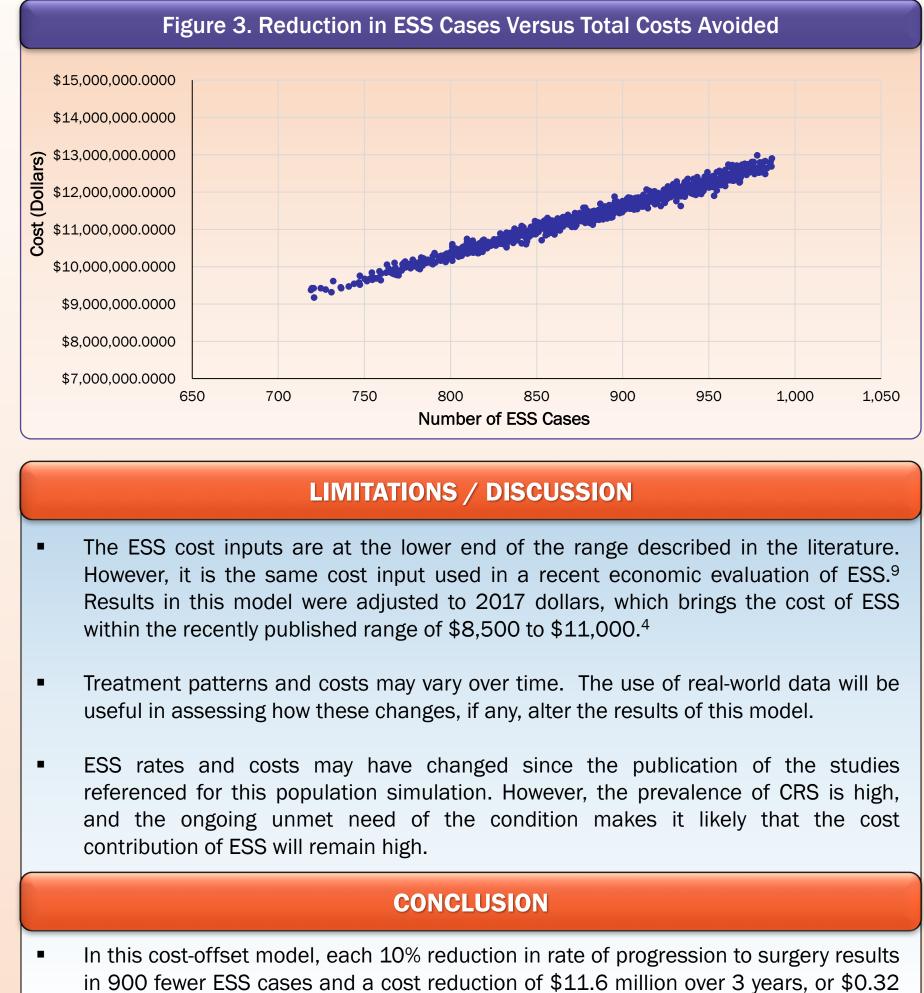
- ESS, revisions, and complications would account for 69% of overall CRS

Each 10% reduction in the ESS rate through improvement in appropriate medical therapy would avoid 900 ESS procedures, 78 revisions, and 9 serious complications (Table 2, Figure 2).

Table 2. Number of Surgeries: Current Care Versus 10% Reduction In ESS								
	Year 1	Year 2	Year 3	Total	Complicated Surgeries	Revision Surgeries		
No. of ESS procedures with current care	2556	2999	3442	8996	90	783		
No. of ESS procedures with 10% reduction in ESS rate	2300	2699	3098	8097	81	704		
Surgeries avoided in a 1,000,000- member plan with a 10% reduction	256	300	344	900	9	78		

Impact of 10% reduction on ESS-related costs

- A total of \$11.6 million in ESS-associated costs could be avoided, including \$9.2
- Overall, the projected cost offset for each 10% reduction would be \$0.32 PMPM, or \$14.42 PPPM, respectively.


Table 3. 3-Year Cost Comparison (2017 USD): Current Care Versus 10% Reduction in ESS							
	Standard of Care	10% Reduction in ESS Rate	Total Savings (All Patients)	PMPM Savings	PPPY Savings		
ESS Costs	\$85,951,415	\$77,586,138	\$8,365,278	\$0.23	\$124.75		
Complicated ESS Costs	\$1,896,524	\$1,706,872	\$189,652	\$0.01	\$2.83		
Revision ESS Costs	\$6,047,099	\$5,442,389	\$604,710	\$0.02	\$9.02		
Total ESS Costs	\$93,895,039	\$84,735,399	\$9,159,640	\$0.25	\$136.60		
Office visit Costs	\$13,910,821	\$12,892,589	\$1,018,232	\$0.03	\$15.19		
Medical Costs	\$16,087,136	\$15,336,754	\$750,382	\$0.02	\$11.19		
Radiology Costs	\$2,083,287	\$1,972,055	\$111,232	\$0.00	\$1.66		
Endoscopy Costs	\$5,809,907	\$5,244,452	\$565,455	\$0.02	\$8.43		
Total Costs over 3 y	\$131,786,190	\$120,181,249	\$11,604,942	\$0.32	\$173.07		
PPPY, per patient per year.							

Fulton F. Velez, MD, MBA, MPH¹; Emmanuel M. Mahlis, MD¹; Joseph J Medicis, PharmD²; John C. Messina, PharmD¹; Rachel A. Beckerman, PhD³; Joseph Gricar, MS³; Nathaniel J. Smith, PhD³; Ramy Mahmoud, MD, MPH¹

1. OptiNose US, Inc. Yardley, PA; 2. Pharmaceutical Care Consultants, Syracuse, NY; 3. Maple Health Group, LLC, New York, NY.

Probabilistic sensitivity analysis (PSA)

- Results of the PSA indicate that as few as 719 and as many as 986 ESS cases could be avoided with each 10% reduction in the rate of ESS for every 1 million members. The corresponding cost savings projected varied between \$9 and \$13 million per year.
- The model was most sensitive to changes in the cost of ESS, as well as the rates of ESS over 3 years and during the first 6 months (Figure 3).

PMPM. This suggests that medical interventions for CRS that reduce the need for surgery have potential to meaningfully reduce the high cost of care for CRS patients.

Reference

- Orlandi RR, Kingdom TT, Hwang PH, et al. Int Forum Allergy Rhinol. 2016;6 suppl 1:S22-S209.
- 2. Palmer J, Messina J, Biletch R, Grosel K, Mahmoud R. Health care for chronic rhinosinusitis (CRS) symptoms-a crosssectional, population-based survey of US adults meeting symptom criteria for CRS. Poster session presented at: Annual Meeting of the American Academy of Allergy, Asthma & Immunology; March 3-6, 2017; Atlanta, GA. 3. Caulley L, Thavorn K, Rudmik L, Cameron C, Kilty SJ. J Allergy Clin Immunol. 2015;136(6):1517-1522.
- 4. Rudmik L. Curr Allergy Asthma Rep. 2017;17(4):20.
- Djupesland PG. Drug Deliv Transl Res. 2013;3:42-62
- Bhattacharyya N, Orlandi RR, Grebner J, Martinson M. Otolaryngol Head Neck Surg. 2011;144(3):440-445.
- DeConde AS, Mace JC, Levy JM, Rudmik L, Alt JA, Smith TL. Laryngoscope. 2017;127(3):550-555.
- 8. Mascarenhas JG, da Fonseca VM, Chen VG, et al. *Braz J Otorhinolaryngol*. 2013;79(3):306-311.
- 9. Rudmik L, Soler ZM, Mace JC, Schlosser RJ, Smith TL. *Laryngoscope*. 2015;125(1):25-32.

million in surgical costs, \$1.08 ± 0.01 million in office visits, \$0.7 ± 0.02 million in radiology and endoscopy costs, and 0.6 ± 0.02 million in medications (Table 3).